Charge Transfer Between Quantum Dots and Peptide-Coupled Redox Complexes

نویسندگان

  • I. L. Medintz
  • T. Pons
  • H. Mattoussi
چکیده

Introduction: Nanotechnology has great potential for creating a new generation of multifunctional hybrid bio-inorganic assemblies that are capable of enhancing Navy capabilities and DoD battle systems in general. The unique properties of luminescent quantum dots (QDs) have made them an integral building block in this burgeoning field.1 In addition to their well known size-dependent emission spectra, QDs are extremely sensitive to the presence of additional charges either on their surfaces or in the surrounding environment, which can alter both their photoluminescence (PL) and absorption properties.2 Since the advent of successful techniques to interface QDs with biological molecules, there has been a strong desire to understand the interactions of QDs with redox-active complexes to create new sensors capable of monitoring specific biological and abiotic processes.2 However, as there is only a minimal understanding of these systems, rational design of QD-redox assemblies with control over both architecture and redox levels is needed to provide insight into the underlying mechanisms. Here we label peptides with a variety of metal complexes expressing different oxidation potentials and ratiometrically self-assemble them on the QD surfaces. This unique configuration allows us to gain insights into the underlying quenching processes involved and exploit them for biosensing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Probing the Quenching of Quantum Dot Photoluminescence by Peptide-Labeled Ruthenium(II) Complexes

Charge transfer processes with semiconductor quantum dots (QDs) have generated much interest for potential utility in energy conversion. Such configurations are generally nonbiological; however, recent studies have shown that a redox-active ruthenium(II)-phenanthroline complex (Ru2+-phen) is particularly efficient at quenching the photoluminescence (PL) of QDs, and this mechanism demonstrates g...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Charge transfer magnetoexciton formation at vertically coupled quantum dots

A theoretical investigation is presented on the properties of charge transfer excitons at vertically coupled semiconductor quantum dots in the presence of electric and magnetic fields directed along the growth axis. Such excitons should have two interesting characteristics: an extremely long lifetime and a permanent dipole moment. We show that wave functions and the low-lying energies of charge...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

Theoretical study of the effects of substituent and quadrupole moment on π-π stacking interactions with coronene

Stability of the π-π stacking interactions in the Ben||substituted-coronene and HFBen||substituted-coronene complexes was studied using the computational quantum chemistry methods (where Ben and HFBen are benzene and hexaflourobenzene, || denotes π-π stacking interaction, substituted-coronene is coronene molecule which substituted with four X groups, and X= NH2, CH3, OH, H, F, CF3, CN and NO). ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010